Difference between pages "HM2013" and "JSG T.23"

From Icctwiki
(Difference between pages)
Jump to: navigation, search
 
(Bibliography)
 
Line 1: Line 1:
{{DISPLAYTITLE:Hotine-Marussi Symposium 2013}}
+
<big>'''JSG 0.10: High-rate GNSS'''</big>
===First Announcement and call for papers===
 
  
 +
Chair: ''Mattia Crespi (Italy)''<br>
 +
Affiliation:''Commissions 1, 3 4 and GGOS''
  
=The VIII Hotine-Marussi Symposium Rome, June 17-21, 2013=
+
__TOC__
  
 +
===Introduction===
  
Scientific Committee
+
Global Navigation Satellite Systems (GNSS) have become for a long time an indispensable tool to get accurate and reliable information about positioning and timing; in addition, GNSS are able to provide information related to physical properties of media passed through by GNSS signals. Therefore, GNSS play a central role both in geodesy and geomatics and in several branches of geophysics, representing a cornerstone for the observation and monitoring of our planet.
N. Sneeuw, P. Novak, F. Sansò, M. Crespi, T. van Dam, U. Marti R. Gross, D. Brzezinska, H. Kutterer, W. Kosek, M. Schmidt, C. Gerlach, T. Hobiger, F. Seitz, M. Weigelt, A. Jäggi, R. Čunderlík, K. Mikula, S. Jin, A. Dermanis
 
Local Organizing Committee
 
M. Crespi, E. Benedetti, M. Branzanti, P. Capaldo, G. Colosimo, F. Fratarcangeli, A. Mazzoni, A. Nascetti, F. Pieralice
 
  
 +
So, it is not surprising that, from the very beginning of the GNSS era, the goal was pursued to widen as much as possible the range in space (from local to global) and time (from short to long term) of the observed phenomena, in order to cover the largest possible field of applications, both in science and in engineering; two complementary, but primary as well, goals were, obviously, to get these information with the highest accuracy and in the shortest time.
  
 +
The advances in technology and the deployment of new constellations, after GPS (in the next years will be completed the European Galileo, the Chinese Beidou and the Japanese QZSS) remarkably contributed to transform this three-goals dream in reality, but still remain significant challenges when very fast phenomena have to be observed, mainly if real-time results are looked for.
  
 +
Actually, for almost 15 years, starting from the noble birth in seismology, and the very first experiences in structural monitoring, high-rate GNSS has demonstrated its usefulness and power in providing precise positioning information in fast time-varying environments. At the beginning, high-rate observations were mostly limited at 1 Hz, but the technology development provided GNSS equipment (in some cases even at low-cost) able to collect measurements at much higher rates, up to 100 Hz, therefore opening new possibilities, and meanwhile new challenges and problems.
  
Dear Colleagues and Friends,  
+
So, it is necessary to think about how to optimally process this potential huge heap of data, in order to supply information of high value for a large (and likely increasing) variety of applications, some of them listed hereafter without the claim to be exhaustive: better understanding of the geophysical/geodynamical processes mechanics; monitoring of ground shaking and displacement during earthquakes, also for contribution to tsunami early warning; tracking the fast variations of the ionosphere; real-time controlling landslides and the safety of structures; providing detailed trajectories and kinematic parameters (not only position, but also velocity and acceleration) of high dynamic platforms such as airborne sensors, high-speed terrestrial vehicles and even athlete and sport vehicles monitoring.
It is both our privilege and pleasure to invite you to the VIII Hotine-Marussi Symposium, which will be held at the Faculty of Engineering of the University of Rome “La Sapienza”, Italy on June 17-21, 2013, under the scientific coordination of the Intercommission Committee on Theory (ICCT) of the International Association of Geodesy (IAG).
 
This First Circular just brings some general information; more details will be available soon at the Hotine-Marussi Symposium 2013 website.
 
Objectives
 
The main goals of the Symposium are aligned with the objectives of the ICCT:
 
 advances in theoretical geodesy
 
 developments in geodetic modelling and data processing in the light of the recent advances of the geodetic observing systems
 
 connections and contribution exchanges between geodesy and other Earth sciences
 
In particular, all the topics regarding the activities of the ICCT Study Groups are of interest and related papers are strongly encouraged.
 
Further, also papers concerning other topics related to the possible interaction and mutual benefits between geodetic theory and methodology and other initiatives/projects involving Earth sciences (for example the Group on Earth Observation) are welcome.
 
In this respect, it has also to be recalled that 2013 will be the special year for the Mathematics of Planet Earth.
 
Venue
 
The Symposium will be held at the Faculty of Engineering of the Sapienza University of Rome, Italy, in the ancient chiostro of the Basilica of S. Pietro in Vincoli, where the worldwide known Michelangelo's statue Moses is placed. The Symposium location is downtown Rome, at walking distance from the Colosseo, Fori Imperiali and many other famous archaeological sites and monuments.
 
Please, mind that June is a high-season tourist period in Rome, so that an early registration and accomodation booking is highly recommended.
 
Abstracts, presentations and papers
 
Abstracts should be prepared according to guidelines and submitted through e-mail.
 
Deadline for submission is January 31, 2013. Both the guidelines and the e-mail address are available on the Hotine-Marussi Symposium 2013 website.
 
Each abstract will be reviewed by the Scientific Committee and its eventual acceptance will be notified by e-mail to the Corresponding Author by March 15, 2013.
 
Upon abstract submission, the Corresponding Author will need to indicate the preference for oral or poster presentation. However, the final decision for the presentation form will be taken by the Scientific Committee during the abstract review.
 
Guidelines for full paper submission for peer-review and related formatting instruction will be available through the Hotine-Marussi Symposium 2013 website.
 
Accepted papers will be published by Springer as a volume of the official IAG series.
 
Registration fees
 
Two kinds of registration fees are distinguished:
 
 regular registration: 450 Euro
 
 student registration: 250 Euro (confirmation of student status by supervisor required)
 
An additional 100 Euro fee will be charged for late registration (after April 15, 2013).
 
The registration fees can be paid by bank transfer or credit card according to the information that is published on the Hotine-Marussi Symposium 2013 website.
 
They include:
 
 Symposium proceedings
 
 coffee breaks
 
 Rome tour
 
 social dinner
 
Social programme
 
The scientific programme will be complemented with a social one, including a tour in Rome, a social dinner and a special session at the Accademia dei Lincei (the oldest Scientific Academy in the world, established in 1603 by Federico Cesi).
 
  
We look forward to welcome you in Rome!
+
Further, due to the contemporary technological development of other sensors (hereafter referred as ancillary sensors) related to positioning and kinematics able to collect data at high-rate (among which MEMS accelerometers and gyros play a central role, also for their low-cost), the feasibility of a unique device for high-rate observations embedding GNSS receiver and MEMS sensors is real, and it opens, again, new opportunities and problems, first of all related to sensors integration.
N. Sneeuw, P. Novak, F. Sansò, M. Crespi
+
 
 +
All in all, it is clear that high-rate GNSS (and ancillary sensors) observations represent a great resource for future investigations in Earth sciences and applications in engineering, meanwhile stimulating a due attention from the methodological point of view in order to exploit their full potential and extract the best information.  This is the why it is worth to open a focus on high-rate (and, if possible, real-time) GNSS within ICCT.
 +
 
 +
===Objectives===
 +
 
 +
* To realize the inventories of:
 +
** the available and applied methodologies for high-rate GNSS, in order to highlight their pros and cons and the open problems,
 +
** the present and wished applications of high-rate GNSS for science and engineering, with a special concern to the estimated quantities (geodetic, kinematic, physical), in order to focus on related problems (still open and possibly new) and draw future challenges
 +
** the technology (hw, both for GNSS and ancillary sensors, and sw, possibly FOSS), pointing out what is ready and what is coming, with a special concern for the supplied observations and for their functional and stochastic modeling with the by-product of establishing a standardized terminology
 +
* To address known (mostly cross-linked) problems related to high-rate GNSS as (not an exhaustive list): revision and refinement of functional and stochastic models; evaluation and impact of observations time-correlation; impact of multipath and constellation change; outliers detection and removal; issues about GNSS constellations interoperability; ancillary sensors evaluation, cross-calibration and  integration
 +
* To address the new problems and future challanges arised from the inventories
 +
* To investigate about the interaction with present real-time global (IGS-RTS, EUREF-IP, etc.) and regional/local positioning services: how can these services support high-rate GNSS observations and, on reverse, how can they benefit of high-rate GNSS observations
 +
 
 +
===Program of activities===
 +
 
 +
* To launch a questionnaire for the above mentioned inventory of methodologies, applications and technologies.
 +
* To open a web page with information concerning high-rate GNSS and its wide applications in science and engineering, with special emphasis on exchange of ideas, provision and updating bibliographic list of references of research results and relevant publications from different disciplines.
 +
* To launch the proposal for two (one science and the other engineering oriented) state-of-the-art review papers in high-rate GNSS co-authored by the JSG Members.
 +
* To organize a session at the forthcoming Hotine-Marussi symposium.
 +
* To promote sessions and presentation of the  research results at international symposia both related to Earth science (IAG/IUGG, EGU, AGU, EUREF, IGS) and engineering (workshops and congresses in structural and geotechnical engineering).
 +
 
 +
===Members===
 +
 
 +
'' '''Mattia Crespi (Italy), chair''' <br /> Juan Carlos Baez (Chile) <br /> Elisa Benedetti (United Kingdom) <br /> Geo Boffi (Switzerland) <br /> Gabriele Colosimo (Switzerland) <br /> Athanasios Dermanis (Greece) <br /> Roberto Devoti (Italy) <br /> Jeff Freymueller (USA) <br /> Joao Francisco Galera Monico (Brazil) <br /> Jianghui Geng (Germany) <br /> Kosuke Heki (Japan) <br /> Melvin Hoyer (Venezuela) <br /> Nanthi Nadarajah (Australia) <br /> Yusaku Ohta (Japan) <br /> Ruey-Juin Rau (Taiwan) <br /> Eugenio Realini (Italy) <br /> Chris Rizos (Australia) <br /> Nico Sneeuw (Germany) <br /> Peiliang Xu (Japan) <br />''
 +
 
 +
 
 +
===Bibliography===
 +
 
 +
At the following link it is possible to find the High-rate GNSS bibliography
 +
 
 +
http://icct.kma.zcu.cz/index.php/JSG_0.10:_High-rate_GNSS_-_Bibliography

Revision as of 19:51, 2 September 2016

JSG 0.10: High-rate GNSS

Chair: Mattia Crespi (Italy)
Affiliation:Commissions 1, 3 4 and GGOS

Introduction

Global Navigation Satellite Systems (GNSS) have become for a long time an indispensable tool to get accurate and reliable information about positioning and timing; in addition, GNSS are able to provide information related to physical properties of media passed through by GNSS signals. Therefore, GNSS play a central role both in geodesy and geomatics and in several branches of geophysics, representing a cornerstone for the observation and monitoring of our planet.

So, it is not surprising that, from the very beginning of the GNSS era, the goal was pursued to widen as much as possible the range in space (from local to global) and time (from short to long term) of the observed phenomena, in order to cover the largest possible field of applications, both in science and in engineering; two complementary, but primary as well, goals were, obviously, to get these information with the highest accuracy and in the shortest time.

The advances in technology and the deployment of new constellations, after GPS (in the next years will be completed the European Galileo, the Chinese Beidou and the Japanese QZSS) remarkably contributed to transform this three-goals dream in reality, but still remain significant challenges when very fast phenomena have to be observed, mainly if real-time results are looked for.

Actually, for almost 15 years, starting from the noble birth in seismology, and the very first experiences in structural monitoring, high-rate GNSS has demonstrated its usefulness and power in providing precise positioning information in fast time-varying environments. At the beginning, high-rate observations were mostly limited at 1 Hz, but the technology development provided GNSS equipment (in some cases even at low-cost) able to collect measurements at much higher rates, up to 100 Hz, therefore opening new possibilities, and meanwhile new challenges and problems.

So, it is necessary to think about how to optimally process this potential huge heap of data, in order to supply information of high value for a large (and likely increasing) variety of applications, some of them listed hereafter without the claim to be exhaustive: better understanding of the geophysical/geodynamical processes mechanics; monitoring of ground shaking and displacement during earthquakes, also for contribution to tsunami early warning; tracking the fast variations of the ionosphere; real-time controlling landslides and the safety of structures; providing detailed trajectories and kinematic parameters (not only position, but also velocity and acceleration) of high dynamic platforms such as airborne sensors, high-speed terrestrial vehicles and even athlete and sport vehicles monitoring.

Further, due to the contemporary technological development of other sensors (hereafter referred as ancillary sensors) related to positioning and kinematics able to collect data at high-rate (among which MEMS accelerometers and gyros play a central role, also for their low-cost), the feasibility of a unique device for high-rate observations embedding GNSS receiver and MEMS sensors is real, and it opens, again, new opportunities and problems, first of all related to sensors integration.

All in all, it is clear that high-rate GNSS (and ancillary sensors) observations represent a great resource for future investigations in Earth sciences and applications in engineering, meanwhile stimulating a due attention from the methodological point of view in order to exploit their full potential and extract the best information. This is the why it is worth to open a focus on high-rate (and, if possible, real-time) GNSS within ICCT.

Objectives

  • To realize the inventories of:
    • the available and applied methodologies for high-rate GNSS, in order to highlight their pros and cons and the open problems,
    • the present and wished applications of high-rate GNSS for science and engineering, with a special concern to the estimated quantities (geodetic, kinematic, physical), in order to focus on related problems (still open and possibly new) and draw future challenges
    • the technology (hw, both for GNSS and ancillary sensors, and sw, possibly FOSS), pointing out what is ready and what is coming, with a special concern for the supplied observations and for their functional and stochastic modeling with the by-product of establishing a standardized terminology
  • To address known (mostly cross-linked) problems related to high-rate GNSS as (not an exhaustive list): revision and refinement of functional and stochastic models; evaluation and impact of observations time-correlation; impact of multipath and constellation change; outliers detection and removal; issues about GNSS constellations interoperability; ancillary sensors evaluation, cross-calibration and integration
  • To address the new problems and future challanges arised from the inventories
  • To investigate about the interaction with present real-time global (IGS-RTS, EUREF-IP, etc.) and regional/local positioning services: how can these services support high-rate GNSS observations and, on reverse, how can they benefit of high-rate GNSS observations

Program of activities

  • To launch a questionnaire for the above mentioned inventory of methodologies, applications and technologies.
  • To open a web page with information concerning high-rate GNSS and its wide applications in science and engineering, with special emphasis on exchange of ideas, provision and updating bibliographic list of references of research results and relevant publications from different disciplines.
  • To launch the proposal for two (one science and the other engineering oriented) state-of-the-art review papers in high-rate GNSS co-authored by the JSG Members.
  • To organize a session at the forthcoming Hotine-Marussi symposium.
  • To promote sessions and presentation of the research results at international symposia both related to Earth science (IAG/IUGG, EGU, AGU, EUREF, IGS) and engineering (workshops and congresses in structural and geotechnical engineering).

Members

Mattia Crespi (Italy), chair
Juan Carlos Baez (Chile)
Elisa Benedetti (United Kingdom)
Geo Boffi (Switzerland)
Gabriele Colosimo (Switzerland)
Athanasios Dermanis (Greece)
Roberto Devoti (Italy)
Jeff Freymueller (USA)
Joao Francisco Galera Monico (Brazil)
Jianghui Geng (Germany)
Kosuke Heki (Japan)
Melvin Hoyer (Venezuela)
Nanthi Nadarajah (Australia)
Yusaku Ohta (Japan)
Ruey-Juin Rau (Taiwan)
Eugenio Realini (Italy)
Chris Rizos (Australia)
Nico Sneeuw (Germany)
Peiliang Xu (Japan)


Bibliography

At the following link it is possible to find the High-rate GNSS bibliography

http://icct.kma.zcu.cz/index.php/JSG_0.10:_High-rate_GNSS_-_Bibliography