Difference between pages "IC SG2" and "IC SG5"

From Icctwiki
(Difference between pages)
Jump to: navigation, search
(Objectives)
 
(Planned Activities)
 
Line 1: Line 1:
<big>'''JSG 0.2: Gravity field modelling in support of world height system realization'''</big>
+
<big>'''JSG 0.5: Multi-sensor combination for the separation of integral
 +
geodetic signals'''</big>
  
Chair:''P. Novák (Czech Republic)''<br>
+
Chair: ''F. Seitz (Germany)''<br>
Affiliation:''Comm. 2, 1 and GGOS''
+
Affiliation: ''Comm. 2, 3 and GGOS''
  
 
__TOC__
 
__TOC__
===Introduction===
+
===Objectives===
 +
 
 +
A large part of the geodetic parameters derived from space geodetic observation techniques are integral quantities of the Earth system. Among the most prominent ones are parameters related to Earth rotation and the gravity field. Variations of those parameters reflect the superposed effect of a multitude of dynamical processes and interactions in various subsystems of the Earth. The integral geodetic quantities provide fundamental and unique information for different balances in the Earth system, in particular for the balances of mass and angular momentum that are directly related to (variations of) the gravity field and Earth rotation. In respective balance equations the geodetic parameters describe the integral effect of exchange processes of mass and angular momentum in the Earth system. In contrast to many other disciplines of geosciences, geodesy is characterized by a very long observation history. Partly, the previously mentioned parameters have been determined over many decades with continuously improved space observation techniques. Thus geodesy provides an excellent data base for the analysis of long term changes in the Earth system and contributes fundamentally to an improved understanding of large-scale processes.
 +
 
 +
However, in general the integral parameter time series cannot be separated into contributions of specific processes without further information. Their separation and therewith their geophysical interpretation requires complementary data from observation techniques that are unequally sensitive for individual effects and/or from numerical models. Activities of the study group are focussed on the development of strategies for the separation of the integral geodetic signals on the basis of modern space-based Earth observation systems. A multitude of simultaneously operating satellite systems with different objectives is available today. They offer a broad spectrum of information on global and regional-scale processes at different temporal resolutions. Within the study group it shall be investigated in which way the combination of heterogeneous data sets allows for the quantification of individual contributors to the balances of mass and angular momentum.
  
Description of the Earth’s gravity field still remains a major research topic in geodesy. The main goal is to provide reliable global models covering all spatially-temporal frequencies of its scalar parameterization through the gravity potential. Detailed and accurate gravity field models are required for proper positioning and orientation of geodetic sensors (data geo-referencing). Geometric properties of the gravity field are then studied including those of its equipotential surfaces and their respective surface normals, since they play a fundamental role in definition and realization of geodetic reference systems. Gravity field models will be applied for definition and realization of a vertical reference system (currently under construction) that will support studies of the Earth system.
+
The research activities shall be coordinated between the participating scientists and shall be conducted in interdisciplinary collaboration. At all times the group is open for new contacts and members in order to embed the activities in a wide context. The study group is primarily affiliated with the IAG commissions 2 (Gravity field) and 3 (Earth rotation and geodynamics).
This study group is an entity of the Inter-Commission Committee on Theory. It is affiliated to Commissions 1 (Reference Frames) and 2 (Gravity Field); its close co-operation with GGOS Theme 1 “Unified Global Height System” is anticipated. It aims at bringing together scientists concerned namely with theoretical aspects in the areas of interest specified below.
 
  
 
===Objectives===
 
===Objectives===
  
* Considering different types and large amounts of gravity-related data available today, large variety of gravity field models and the ongoing IAG project of realizing a world height system (WHS), this study group shall focuses on theoretical aspects related to the following (non-exhaustive to WHS) list of problems:
+
The primary objective of the study group is the development of strategies for multi-sensor combinations with the aim of separating time series of integral geodetic parameters related to Earth rotation and gravity field. The separation of the parameter time series into contributions of individual underlying effects fosters the understanding of dynamical processes and interactions in the Earth system. This is of particular interest in the view of global change.
* To study available gravity field models in terms of their available resolution, accuracy and stability for the purpose of WHS realization.
+
 
* To define a role of a conventional model of the Earth’s gravity field (EGM) to be used for WHS realization including its scale parameters.
+
Individual contributions from various subsystems of the Earth shall be quantified and balanced. In particular our investigations focus on the separation of the Earth rotation parameters (polar motion and variations of length-of-day) into contributions of atmospheric and hydrospheric angular momentum variations, and on the separation of GRACE gravity field observations over continents into the contributions of individual hydrological storage compartments, such as groundwater, surface water, soil moisture and snow.
* To study relations between an adopted conventional EGM and parameters of a geocentric reference ellipsoid of revolution approximating a time invariant equipotential surface of the adopted EGM aligned to reduced observables of mean sea level.
+
Investigations in the frame of the study group will exploit the synergies of various observation systems (satellite altimetry, optical and radar remote sensing, SMOS, and others) for the separation of the signals and combine their output with numerical models. Among the most important steps are compilation and assessment of background information for individual observation systems and sensors (mode of operation, sensitivity, accuracy, deficiencies) as well as theoretical studies which (new) information on the Earth system can be gained from a combination of different observation methods.
* To study theoretical aspects of various methods proposed for WHS definition and realization including investigations on tidal system effects.
+
 
To investigate combination of heterogeneous gravity field observables by using spatial inversion, spherical radial functions, collocation, wavelets, etc. and by taking into account their sampling geometry, spectral and stochastic properties.
+
In particular the research comprises the following topics:
* To investigate methods of gravity field modelling based on combination of global gravitational models, ground and airborne gravity, GNSS/levelling height differences, altimetry data, deflections of the vertical, etc.
+
* potential und usability of contemporary spaceborne and terrestrial sensors for an improved understanding of processes within atmosphere and hydrosphere,
* To study stable, accurate and efficient methods for continuation of gravity field parameters including spaceborne observables of type GRACE and GOCE.
+
* analysis of accuracy, temporal and spatial resolution and coverage of different data sets,
* To advance theory and methods for solving various initial and boundary value problems (I/BVP) in geodesy.
+
* theoretical and numerical studies on the combination of heterogeneous observation types; this comprehends investigations on appropriate methods for parameter estimation including error propagation, the analysis of linear dependencies between parameters and the solution of rank deficiency problems,
* To study methods for gravity potential estimation based on its measured directional derivatives (gravity, gravity gradients) by exploiting advantages of simultaneous continuation and inversion of observations.
+
* mathematical methods for the enhancement of the information content (e.g., filters),
* To investigate requirements for gravity data (stochastic properties, spatially-temporal sampling, spectral content etc.) in terms of their specific geodetic applications.
+
* quantification of variations of mass and angular momentum in different subsystems from multi-sensor analysis.
 +
* analysis of the consistencies of balances between individ-ual effects and integral geodetic parameters on different spatial scales
 +
* formulation of recommendations for future research and (if possible) for future satellite missions on the basis of balance inconsistencies
 +
 
 +
===Planned Activities===
 +
 
 +
* Set-up of a JSG webpage for dissemination of information (activities and a bibliographic list of references) and for presentation and communication of research results.
 +
* Organization of conference sessions / workshops:
 +
** planned in 2013: Conference Session in the Hotine Marussi Symposium
 +
** planned in 2014: 2nd workshop on the Quality of Geodetic Observing and Monitoring Systems (QuGOMS’ 14)
 +
* Common publications of SG members
 +
* Common fund raising activities (e.g., for PhD. positions)
  
===Program of Activities===
+
===Principal Scientific Outcome/Results===
  
Active participation at major geodetic conferences and meetings.
+
By the end of the 4-year period 2011-2015 the following outcome shall be achieved:
Organizing a session at the Hotine-Marussi Symposium 2013.
+
Mature experience in geodetic multi-sensor data combina-tion including data availability, formats, combination strategies and accuracy aspects
Co-operation with affiliated IAG Commissions and GGOS.
+
Numerical results for separated hydrological contributions to integral mass variations observed by GRACE for selected study areas.
Electronic exchange of ideas and thoughts through a SG web page.
+
Numerical results for separated atmospheric/hydrospheric contributions Earth rotation parameters on seasonal to inter-annual time scales
Monitoring activities of SG members and external individuals related to SG.
+
Initiation of at least one common funded project with posi-tions for PhD students working in the topical field of the study group
Compiling bibliography in the area of SG interest.
 
  
 
===Members===
 
===Members===
  
'' '''Pavel Novák (Czech Republic), chair'''<br />Hussein Abd-Elmotaal (Egypt)<br />Robert Čunderlík (Slovakia)<br />Heiner Denker (Germany)<br />Will Featherstone (Australia)<br />René Forsberg (Denmark)<br />Bernhard Heck (Germany)<br />Jianliang Huang (Canada)<br />
+
'' '''Florian Seitz (Germany), chair'''<br />Sarah Abelen (Germany)<br />Rodrigo Abarca del Rio (Chile)<br />Andreas Güntner (Germany)
Christopher Jekeli (USA)<br />Dan Roman (USA)<br />Fernando Sansò (Italy)<br />Michael G Sideris (Canada)<br />Lars Sjöberg (Sweden)<br />
+
<br />Karin Hedman (Germany)<br />Franz Meyer (USA)<br />Michael Schmidt (Germany)<br />Manuela Seitz (Germany)<br />Alka Singh (India)<br />''
Robert Tenzer (New Zealand)<br />Yan-Ming Wang (USA)<br />''
 

Revision as of 11:48, 2 July 2012

JSG 0.5: Multi-sensor combination for the separation of integral geodetic signals

Chair: F. Seitz (Germany)
Affiliation: Comm. 2, 3 and GGOS

Objectives

A large part of the geodetic parameters derived from space geodetic observation techniques are integral quantities of the Earth system. Among the most prominent ones are parameters related to Earth rotation and the gravity field. Variations of those parameters reflect the superposed effect of a multitude of dynamical processes and interactions in various subsystems of the Earth. The integral geodetic quantities provide fundamental and unique information for different balances in the Earth system, in particular for the balances of mass and angular momentum that are directly related to (variations of) the gravity field and Earth rotation. In respective balance equations the geodetic parameters describe the integral effect of exchange processes of mass and angular momentum in the Earth system. In contrast to many other disciplines of geosciences, geodesy is characterized by a very long observation history. Partly, the previously mentioned parameters have been determined over many decades with continuously improved space observation techniques. Thus geodesy provides an excellent data base for the analysis of long term changes in the Earth system and contributes fundamentally to an improved understanding of large-scale processes.

However, in general the integral parameter time series cannot be separated into contributions of specific processes without further information. Their separation and therewith their geophysical interpretation requires complementary data from observation techniques that are unequally sensitive for individual effects and/or from numerical models. Activities of the study group are focussed on the development of strategies for the separation of the integral geodetic signals on the basis of modern space-based Earth observation systems. A multitude of simultaneously operating satellite systems with different objectives is available today. They offer a broad spectrum of information on global and regional-scale processes at different temporal resolutions. Within the study group it shall be investigated in which way the combination of heterogeneous data sets allows for the quantification of individual contributors to the balances of mass and angular momentum.

The research activities shall be coordinated between the participating scientists and shall be conducted in interdisciplinary collaboration. At all times the group is open for new contacts and members in order to embed the activities in a wide context. The study group is primarily affiliated with the IAG commissions 2 (Gravity field) and 3 (Earth rotation and geodynamics).

Objectives

The primary objective of the study group is the development of strategies for multi-sensor combinations with the aim of separating time series of integral geodetic parameters related to Earth rotation and gravity field. The separation of the parameter time series into contributions of individual underlying effects fosters the understanding of dynamical processes and interactions in the Earth system. This is of particular interest in the view of global change.

Individual contributions from various subsystems of the Earth shall be quantified and balanced. In particular our investigations focus on the separation of the Earth rotation parameters (polar motion and variations of length-of-day) into contributions of atmospheric and hydrospheric angular momentum variations, and on the separation of GRACE gravity field observations over continents into the contributions of individual hydrological storage compartments, such as groundwater, surface water, soil moisture and snow. Investigations in the frame of the study group will exploit the synergies of various observation systems (satellite altimetry, optical and radar remote sensing, SMOS, and others) for the separation of the signals and combine their output with numerical models. Among the most important steps are compilation and assessment of background information for individual observation systems and sensors (mode of operation, sensitivity, accuracy, deficiencies) as well as theoretical studies which (new) information on the Earth system can be gained from a combination of different observation methods.

In particular the research comprises the following topics:

  • potential und usability of contemporary spaceborne and terrestrial sensors for an improved understanding of processes within atmosphere and hydrosphere,
  • analysis of accuracy, temporal and spatial resolution and coverage of different data sets,
  • theoretical and numerical studies on the combination of heterogeneous observation types; this comprehends investigations on appropriate methods for parameter estimation including error propagation, the analysis of linear dependencies between parameters and the solution of rank deficiency problems,
  • mathematical methods for the enhancement of the information content (e.g., filters),
  • quantification of variations of mass and angular momentum in different subsystems from multi-sensor analysis.
  • analysis of the consistencies of balances between individ-ual effects and integral geodetic parameters on different spatial scales
  • formulation of recommendations for future research and (if possible) for future satellite missions on the basis of balance inconsistencies

Planned Activities

  • Set-up of a JSG webpage for dissemination of information (activities and a bibliographic list of references) and for presentation and communication of research results.
  • Organization of conference sessions / workshops:
    • planned in 2013: Conference Session in the Hotine Marussi Symposium
    • planned in 2014: 2nd workshop on the Quality of Geodetic Observing and Monitoring Systems (QuGOMS’ 14)
  • Common publications of SG members
  • Common fund raising activities (e.g., for PhD. positions)

Principal Scientific Outcome/Results

By the end of the 4-year period 2011-2015 the following outcome shall be achieved: Mature experience in geodetic multi-sensor data combina-tion including data availability, formats, combination strategies and accuracy aspects Numerical results for separated hydrological contributions to integral mass variations observed by GRACE for selected study areas. Numerical results for separated atmospheric/hydrospheric contributions Earth rotation parameters on seasonal to inter-annual time scales Initiation of at least one common funded project with posi-tions for PhD students working in the topical field of the study group

Members

Florian Seitz (Germany), chair
Sarah Abelen (Germany)
Rodrigo Abarca del Rio (Chile)
Andreas Güntner (Germany)

Karin Hedman (Germany)
Franz Meyer (USA)
Michael Schmidt (Germany)
Manuela Seitz (Germany)
Alka Singh (India)